无巧不成书。恰逢美苏太空争霸,德国一家公司科研人员在火箭发射中找到创新灵感:火箭喷口处安装可控折流板,可以偏转喷气流从而操纵火箭飞行姿态,战机发动机能否装上这种折流板?
科研人员很快将设想付诸实践。1990年,X-31试验机诞生,该战机发动机尾喷口装有3块碳纤维复合材料舵面。在试飞员的操纵下,X-31试验机以70度大迎角飞向蓝天,创下过失速机动能力的新纪录,一时间震惊世界。
当时,安装折流板无需对发动机进行重新设计,在现役战机改装方面展现出独特优势。不过,科研人员很快发现加装折流板的一个致命缺陷:机械机构外廓尺寸和重量较大,导致战机在超声速飞行时推力减弱。
如何提升推力矢量发动机效率?当时,美国和苏联给出了不同答案:美国普惠公司选择将尾喷管“捏扁”,用4块调节板打造矩形二元矢量喷口,以降低超声速飞行时的阻力;苏联留里卡设计局将周向鱼鳞片用“束带”固紧尾喷口管道,通过液压系统操纵喷口全向摆动,实现柔性偏转。
进入21世纪,美国研制出搭载扁平式矢量喷口的F-22隐身战机,俄罗斯则推出了“留里卡式”的新一代苏-35战机,机动能力更强。一时间,推力矢量发动机成为世界各国的竞逐赛场。时至今日,“美系”和“俄系”推力矢量发动机仍是各国战机仿制的主要选择。
航空界有句话:“只要发动机足够强劲,砖头都能飞上天。”近年来,推力矢量技术所提供的额外机动性和操纵能力已取代部分舵面的功能。目前,鉴于无尾翼设计的可行性,一些国家已将简化舵面列入六代机发展计划。由此可见,推力矢量技术发展将在科学家的探索下拥有更多可能。
·“心脏”移植,实现战机和发动机最佳匹配
一款新型推力矢量发动机的研发技术再先进、图纸设计再完美,能不能试验成功,最终取决于发动机与战机的匹配程度。
|