】 【打 印】 
【 第1页 第2页 第3页 】 
AI检测AI:“矛”更利还是“盾”更坚
http://www.CRNTT.com   2024-08-16 15:03:10


 
  AIGC相对套路化的创作,可能会影响人类的用语习惯。“随着越来越多人用AI创作或润色文字,人类会受到潜移默化的影响,这或将影响整个社会对语言的使用。”鲍光胜说。

  三种路径识别文本

  如何准确识别AI生成内容?鲍光胜介绍,目前主要有三种技术路径进行检测,分别是模型训练分类器法(也被称为监督分类器法)、零样本分类器法、文本水印法。“三种检测方法本质上都是利用AI检测AI,且各有优劣。”鲍光胜说。

  模型训练分类器法,首先要收集大量人类创作内容与AIGC,然后以此为基础训练一个能区分两类内容的分类器。“这是目前被广泛使用的一种方法,但缺点较为明显。”鲍光胜解释,用于训练分类器的数据有限,很难覆盖所有类型和语言的文本。分类器在训练数据覆盖的文本领域或语言上检测准确率较高,反之准确率则较低。而且,模型训练往往需要较高成本,数据规模越大,训练成本越高。

  相比之下,零样本分类器法不需要对机器进行训练,也无需收集数据。它利用已训练好的大模型,抽取语言模型生成文本的特征,据此来区别人类与机器。“似然函数是零样本检测法中比较常用的基准之一,它可以简单理解为一段文本在某个模型的建模分布中出现的概率。概率是一种特征,不同的概率体现了人类创作内容与AIGC的差异。”鲍光胜进一步解释,“零样本分类通过综合考虑多种函数特征来区分人类创作内容与AIGC。”

  如今,很多大语言模型几乎覆盖了互联网上的全部数据。因此,相比于模型训练分类器,零样本分类器在不同领域、不同语言的文本上表现较为一致。

  不过,零样本分类器也存在明显缺点。一方面,现有零样本分类器依赖生成文本的源语言模型进行检测,这意味着如果是未知源模型生成的文本,分类器就无法准确检测。另一方面,为提高检测准确率,零样本分类器往往需要多次调用模型,这增加了模型的使用成本和计算时间。

  “文本水印法则是一类‘主动方法’。区别于前两类方法,它不是检测已生成的文本,而是在AI生成文本时加入水印。人类虽然看不出这些水印,但却能通过技术手段检测出来。”鲍光胜说,文本水印法的准确率较高,但缺点在于水印可能被人为弱化甚至移除。此外,对于无法访问模型内部结构的大语言模型,技术人员可能无法在生成内容时成功加入水印。
 


 【 第1页 第2页 第3页 】 


扫描二维码访问中评网移动版 】 【打 印扫描二维码访问中评社微信  

 相关新闻: