中评社北京8月30日电/据经济日报报导,最近,“端到端”在车圈火了!特斯拉基于“端到端”的FSDV12(完全自动驾驶)方案形成的标杆示范效应,叠加入华传闻,带动“蔚小理”等车企和华为、地平线等服务商纷纷转向,加码端到端自动驾驶技术。
所谓“端到端”,其实是来自深度学习中的概念,英文为“End—to—End(E2E)”,指通过一个AI模型,只要输入原始数据就可以输出最终结果。应用到自动驾驶领域,意味着只需要一个模型,就能把摄像头、毫米波雷达、激光雷达等传感器收集到的感知信息,转换成车辆方向盘的转动角度、加速踏板的踩踏深度以及制动的力度等具体操作指令,让汽车实现自动驾驶。用小鹏汽车创始人何小鹏的说法,表现得“很丝滑”,更像“人类司机驾驶”。
此前,市面上绝大部分自动驾驶系统为传统模块化方式,即一个人工和智能两分天下的混搭系统:感知依靠神经网络,规划控制则使用人类手动设计的算法。这一系统的好处在于分工明确,发现缺陷便于分模块检查、解决。但问题是,这种模块化的自动驾驶系统在相对简单的驾驶任务上表现不错,而在复杂的驾驶任务面前,其天花板显而易见。就算是号称遥遥领先的城市高阶智驾功能,依然会有机械感,也会在汇入快速路、通过大型路口时宕机。
考虑到自动驾驶的核心挑战是解决无穷无尽的边缘场景,以有限人力解决无限长尾问题的成本和时间难以估量,数据化、模型化成为必然趋势。不过,端到端,同样是一个需要老师傅精心打磨的高难度技术活。
一方面,端到端需要海量高质量数据“投喂”训练。与大语言模型可以在互联网上爬取海量文字数据用于训练不同,端到端智驾需要的视频数据获取成本和难度极高。以特斯拉为例,目前其FSD累计学习的人类驾驶视频片段超过2000万个,而这一规模的数据仅采集成本就需要50亿元至80亿元。
另一方面,端到端需要强大算力的支持。自动驾驶涉及激光雷达、图像感知以及V2X车路协同等技术与解决方案。强大的算力不仅有利于实时处理海量数据,降低数据传输延迟,还可更好地支持面向智慧城市、智慧交通、高级别自动驾驶等全场景。然而,华为车BU、百度极越、蔚来、理想、吉利、长城、小鹏等国内企业算力增长目前均面临较大瓶颈。
|